

Year 12 PHYSICS NCEA Level 2 2021

This course is based on the Physics in New Zealand Curriculum Document and is structured around 3 units of work. The textbooks used are: Year 12 Physics Study Guide, NCEA Level 2, by David Housden, published by ESA Publications (NZ) Ltd and sciPAD Level 2 Physics Workbook.

Mechanics

•	2.4.1	Motion
		Vectors and Scalars, Kinematic Equations, Projectile Motion
٠	2.4.2	Forces
		Newton's Laws, Circular Motion, Equilibrium

2.4.3 Energy and Momentum
 Energy, Momentum

Electricity and Electromagnetism

- 2.6.1 Electrostatics
- Electric Field Strength **DC Current**
 - Current, Voltage, Resistance, Power
- 2.6.3 Electromagnetism Current and Magnetism, Lorentz Forces, Electromagnetic Induction

Wave Phenomena

- 2.3.1 Light Reflection from curved mirrors, Mirror ray diagrams, Refraction, Total internal reflection, Refraction through lenses, Lens ray diagrams.
- 2.3.2 Mechanical waves Reflection of wave fronts, Refraction of waves, Diffraction of waves, Wave interference

The Course offered is NCEA level 2 Physics. HIBS is offering five Achievement Standards.

Unit	Achievement Standard	Description	Internal /External Examination	Credits
2.1	AS91168	Carry out a practical physics investigation that leads to a non- linear mathematical relationship	Internal	4
2.3	AS91170	Demonstrate understanding of waves	External	4
2.4	AS91171	Demonstrate understanding of mechanics	External	6
2.5	AS91172	Demonstrate understanding of atomic and nuclear physics	Internal	3
2.6	AS91173	Demonstrate understanding of electricity and electromagnetism	External	6

Year 12 Timeline

Achievement Standard	Sub topic	Week	Internal/ External Examination
2.3	2.3.1		
Demonstrate understanding of waves	2.3.2	Term 3 week 3 – Term 3 week 7	External
24	2.4.1		
Demonstrate understanding	2.4.2	Term 1 week 10 – Term 2 week 7	External
of mechanics	2.4.3		
2.6	2.6.1		
Demonstrate			
understanding	2.6.2	Term 1 week 1 – Term 1 week 9	External
of electricity			Extornal
and electro-	2.6.3		
magnetism			

The following units will have an internal, (non-credit), end of unit examination which will take place at the conclusion of each unit of work, and an external end of year examination.

The internal component of the subject will be assessed as follows:

Term	Achievement Standard	Internal/External Examination	Assessment	Date
Term 3	2.1 Carry out a practical physics investigation that leads to a non-linear mathematical relationship	Internal	3 Hour Practical Examination	Week 2, Friday, 6 th August NO REASSESSMENT
Term 3	2.5 Demonstrate understanding of atomic and nuclear physics	Internal	Exam	Week 10, Wednesday, 29 th September NO REASSESSMENT

2021 Term/Week Planner and Calendar

W	Month	Date	Topic	Assessment	Assessment/Notes
					Thurs th February - Year 7 & 13
1	February	1-5	Start 2.6		Friday 1 st February Full School
2	February	9-12			Waitangi Day Monday 8th
3	February	15-19			
4	February	22-26			
5	March	1-5			
6	March	9-12			
7	March	15-19			
8	March	22-26			
9	March/April	29-1		2.6 Topic Test	
10	April	7-9	Start 2.4		
11	April	12-16			Good Friday 10 th April
	April	19-23			
	April	26-30			Anzac Day holiday 27 th April
1	May	3-7			
2	May	10-14			
3	May	17-21			ToD 11 th May
4	May	24-28			
5	May/June	31-4			
6	June	8-11			Queen's Birthday 7th June
7	June	14-18		2.4 Topic Test	
8	June	21-25	Start 2.1		
9	July	28-2			
10	July	5-9			
	July	12-16			
	July	19-23			
1	July	26-30			
	,			2.1 Int	
2	August	2-6		Assessment	ToD 5 th August
3	August	9-13	Start 2.3		
4	August	16-20			
5	August	23-27			
6	August/September	30-3			
7	September	6-11		2.3 Topic Test	Tournament week
8	September	13-17	Start 2.5		
9	September	20-24			
				2.5 Int	
10	September/October	27-1		Assessment	
	October	4-8			
	October	11-15			
1	October	18-22			IEE
2	October	26-29			Labour Day 25 th Oct
3	November	1-5			
4	November	8-12			
5	November	15-19			
6	November	22-26			
7	November/December	29-3			ToD 1 st December
8	December	6-10			

Achievement Standard						
Subject Reference		Physics 2.1				
Title		Carry out a practical physics investigation that leads to a non-linear mathematical relationship				
Level	2	Credits	4	Assessment	Internal	
Subfield	Science					
Domain	Physics					
Status		Registered	Status date	;	17 November 2011	
Planned review date		31 December 2018	Date versio	on published	20 November 2014	

2

Version

This achievement standard involves carrying out a practical physics investigation that leads to a non-linear mathematical relationship.

Achievement Criteria

Number

AS91168

Achievement	Achievement with Merit	Achievement with Excellence	
• Carry out a practical physics investigation that leads to a non-linear mathematical relationship.	 Carry out an in-depth practical physics investigation that leads to a non-linear mathematical relationship. 	• Carry out a comprehensive practical physics investigation that leads to a non-linear mathematical relationship.	

Explanatory Notes

1 This achievement standard is derived from *The New Zealand Curriculum*, Learning Media, Ministry of Education, 2007, Level 7; and is related to the material in the *Teaching and Learning Guide for Physics*, Ministry of Education, 2010 at <u>http://seniorsecondary.tki.org.nz</u>. The standard is aligned to the achievement objectives *Physical Inquiry and Physics Concepts* in the Physical World strand and *Investigating in Science* in the Nature of Science strand.

This standard is also derived from Te Marautanga o Aotearoa. For details of Te Marautanga o Aotearoa achievement objectives to which this standard relates, see the <u>Papa Whakaako</u> for the relevant learning area.

- 2 Carry out a practical physics investigation involves:
 - collecting data relevant to the aim based on the manipulation of the independent variable over a reasonable range and number of values
 - drawing a graph that shows the relationship between the independent and dependent variables
 - writing a conclusion which describes the type of mathematical relationship that exists between the variables.

Carry out an in-depth practical physics investigation involves:

- controlling the variable(s) that could have a significant effect on the results
- using technique(s) that increase the accuracy of the measured values of the dependent (and independent, if appropriate) variable
- writing a conclusion that describes the mathematical relationship obtained from the experimental data.

Carry out a comprehensive practical physics investigation involves writing a discussion that addresses critical issues such as:

- a reason why there is a limit to either end of the value chosen for the independent variable
- a justification for why a variable needs to be controlled
- a description of any difficulties encountered when making measurements and how these difficulties were overcome
- the relationship between the findings and physics ideas
- a description of any unexpected results and a suggestion of how they could have been caused and/or the effect they had on the validity of the conclusion.
- 3 *A practical physics investigation* is an activity that includes gathering, processing and interpreting data.
- 4 Conditions of Assessment related to this achievement standard can be found at <u>http://ncea.tki.org.nz/Resources-for-Internally-Assessed-Achievement-Standards</u>.

Number	AS91170	Version	2		
		Achieveme	nt Standaro	d	
Subject Reference		Physics 2.3			
Title		Demonstrate	understandin	g of waves	
Level	2	Credits	4	Assessment	External
Subfield	Science				
Domain	Physics				
Status		Registered	Status date		17 November 2011
Planned review date		31 December 2018	Date version	n published	20 November 2014

This achievement standard involves demonstrating understanding of waves.

Achievement Criteria

Achievement	Achievement with Merit	Achievement with Excellence	
 Demonstrate	 Demonstrate in-depth	 Demonstrate comprehensive	
understanding of waves.	understanding of waves.	understanding of waves.	

Explanatory Notes

 This achievement standard is derived from *The New Zealand Curriculum*, Learning Media, Ministry of Education, 2007, Level 7; and is related to the material in the *Teaching and Learning Guide for Physics*, Ministry of Education, 2010 at <u>http://seniorsecondary.tki.org.nz/</u>. The standard is aligned to the achievement objectives: *Physical Inquiry and Physics Concepts* in the Physical World strand and *Communicating in Science* in the Nature of Science strand.

This standard is also derived from Te Marautanga o Aotearoa. For details of Te Marautanga o Aotearoa achievement objectives to which this standard relates, see the <u>Papa Whakaako</u> for the relevant learning area.

2. *Demonstrate understanding* involves writing statements that show an awareness of how simple facets of phenomena, concepts or principles relate to a described situation.

Demonstrate in-depth understanding involves writing statements that give reasons why phenomena, concepts or principles relate to a described situation. For mathematical solutions, the information may not be directly usable or immediately obvious.

Demonstrate comprehensive understanding involves writing statements that demonstrate understanding of connections between concepts.

- 3. Written statements include mathematical solutions and/or descriptions. Descriptions may include graphs or diagrams.
- 4. Assessment is limited to a selection from the following:

Light:

- reflection in curved mirrors
- refraction through lenses
- refraction
- total internal reflection
- critical angle at a plane boundary.

Waves:

- reflection and refraction at a plane boundary including phase and wave parameter changes if applicable
- superposition of pulses
- diffraction through a slit
- 2-point source interference (qualitative).

Relationships:

$$\frac{1}{f} = \frac{1}{d_o} + \frac{1}{d_i} \text{ or } s_i s_o = f^2$$
$$m = \frac{d_i}{d_o} = \frac{h_i}{h_o} \text{ or } m = \frac{f}{s_o} = \frac{s_i}{f}$$

$$n_1 \sin \theta_1 = n_2 \sin \theta_2 \qquad \frac{n_1}{n_2} = \frac{v_2}{v_1} = \frac{\lambda_2}{\lambda_1}$$

$$v = f\lambda$$
 $f = \frac{1}{T}$ $v = \frac{d}{t}$

5. Assessment Specifications for this achievement standard can be accessed through the Physics Resources page found at <u>http://www.nzqa.govt.nz/qualifications-standards/qualifications/ncea/ncea-subject-resources/</u>.

Number	AS91171	Vers	sion	2		
		Achi	ieveme	nt Standar	d	
Subject Reference		Phys	sics 2.4			
Title		Dem	onstrate	understandin	ig of mechanic	S
Level	2	Crea	dits	6	Assessment	External
Subfield	Science					
Domain	Physics					
Status F		Registered		Status date		17 November 2011
Planned review date		31 Decembe	er 2018	Date versio	n published	20 November 2014

This achievement standard involves demonstrating understanding of mechanics.

Achievement Criteria

Achievement	Achievement with Merit	Achievement with Excellence
 Demonstrate understanding of mechanics. 	 Demonstrate in-depth understanding of mechanics. 	Demonstrate comprehensive understanding of mechanics.

Explanatory Notes

6. This achievement standard is derived from *The New Zealand Curriculum*, Learning Media, Ministry of Education, 2007, Level 7; and is related to the material in the *Teaching and Learning Guide for Physics*, Ministry of Education, 2010 at <u>http://seniorsecondary.tki.org.nz</u>. The standard is aligned to the achievement objectives *Physical Inquiry and Physics Concepts* in the Physical World strand and *Communicating in Science* in the Nature of Science strand.

This standard is also derived from Te Marautanga o Aotearoa. For details of Te Marautanga o Aotearoa achievement objectives to which this standard relates, see the <u>Papa Whakaako</u> for the relevant learning area.

7. *Demonstrate understanding* involves writing statements that show an awareness of how simple facets of phenomena, concepts or principles relate to a described situation.

Demonstrate in-depth understanding involves writing statements that give reasons why phenomena, concepts or principles relate to a described situation. For mathematical solutions, the information may not be directly usable or immediately obvious.

Demonstrate comprehensive understanding involves writing statements that demonstrate understanding of connections between concepts.

- 8. Written statements include mathematical solutions and/or descriptions. Descriptions may include graphs or diagrams.
- 9. Assessment is limited to a selection from the following:

Motion:

- constant acceleration in a straight line
- free fall under gravity
- projectile motion
- circular motion (constant speed with one force only providing centripetal force).

Force:

- force components
- vector addition of forces
- unbalanced force and acceleration
- equilibrium (balanced forces and torques)
- centripetal force
- force and extension of a spring.

Momentum and Energy:

- momentum
- change in momentum in one dimension and impulse
- impulse and force
- conservation of momentum in one dimension
- work
- power and conservation of energy
- elastic potential energy.

Relationships:		
$v = \frac{\Delta d}{\Delta t}$	$a = \frac{\Delta V}{\Delta t}$	
$V_f = V_i + at$	$d = v_i t + \frac{1}{2} a t^2$	
$d=\frac{V_i+V_f}{2}t$	$v_{f}^{2} = v_{i}^{2} + 2ad$	
$a_c = \frac{V^2}{r}$		
p = mv	$\Delta p = F \Delta t$	
$E_{p} = \frac{1}{2} kx^{2}$	$E_k = \frac{1}{2} m v^2$	$\Delta E_{p} = mg\Delta h$
W = Fd	$P = \frac{W}{t}$	
F=ma	$\tau = Fd$	
F = - kx	$F_c = \frac{mv^2}{r}$	

10. Assessment Specifications for this achievement standard can be accessed through the Physics Resources page found at <u>http://www.nzqa.govt.nz/qualifications-standards/qualifications/ncea/ncea-subject-resources/</u>.

Number	AS91172	Version	2	
		Achieveme	nt Standard	
Subject Reference		Physics 2.5		
Title		Demonstrate	understanding of atomic	and nuclear physics
Level	2	Credits	3 Assessme	ent Internal
Subfield	Science			
Domain	Physics			
Status		Registered	Status date	17 November 2011
Planned review date		31 December 2018	Date version publishe	d 20 November 2014

This achievement standard involves demonstrating understanding of atomic and nuclear physics.

Achievement Criteria

Achievement	Achievement with Merit	Achievement with Excellence	
 Demonstrate	 Demonstrate in-depth	 Demonstrate comprehensive	
understanding of atomic	understanding of atomic	understanding of atomic and	
and nuclear physics.	and nuclear physics.	nuclear physics.	

Explanatory Notes

 This achievement standard is derived from *The New Zealand Curriculum*, Learning Media, Ministry of Education, 2007, Level 7; and is related to the material in the *Teaching and Learning Guide for Physics*, Ministry of Education, 2010 at <u>http://seniorsecondary.tki.org.nz</u>. The standard is aligned to the achievement objectives *Physical Inquiry and Physics Concepts* in the Physical World strand and *Communicating in Science* in the Nature of Science strand.

This standard is also derived from Te Marautanga o Aotearoa. For details of Te Marautanga o Aotearoa achievement objectives to which this standard relates, see the <u>Papa Whakaako</u> for the relevant learning area.

2 *Demonstrate understanding* involves writing statements that show an awareness of how simple facets of phenomena, concepts or principles relate to a described situation.

Demonstrate in-depth understanding involves writing statements that give reasons why phenomena, concepts or principles relate to a described situation. For mathematical solutions, the information may not be directly usable or immediately obvious.

Demonstrate comprehensive understanding involves writing statements that demonstrate understanding of connections between concepts.

- 3 Written statements include mathematical solutions and/or descriptions. Descriptions may include graphs or diagrams.
- 4 Assessment typically includes:
 - models of the atom (Thomson and Rutherford), gold foil experiment
 - nuclear transformations: radioactive decay (half life), fission and fusion reactions
 - conservation of atomic and mass number
 - products of nuclear transformation: power generation, E = mc², P = E/t, properties of nuclear emissions (ionising ability, penetration ability).
- 5 Conditions of Assessment related to this achievement standard can be found at <u>http://ncea.tki.org.nz/Resources-for-Internally-Assessed-Achievement-Standards</u>.

Number	AS91173		Version	2			
		ļ	Achieveme	nt Standaro	d		
Subject Reference			Physics 2.6				
Title			Demonstrate understanding of electricity and electromagnetism				
Level	2		Credits	6	Assessment	External	
Subfield	Science						
Domain	Physics						
Status		Registe	red	Status date		17 November 2011	
Planned review date		31 Dece	ember 2018	Date version	n published	20 November 2014	

This achievement standard involves demonstrating understanding of electricity and electromagnetism.

Achievement Criteria

Achievement	Achievement with Merit	Achievement with Excellence	
 Demonstrate understanding of electricity and electromagnetism. 	 Demonstrate in-depth understanding of electricity and electromagnetism. 	 Demonstrate comprehensive understanding of electricity and electromagnetism. 	

Explanatory Notes

 This achievement standard is derived from *The New Zealand Curriculum*, Learning Media, Ministry of Education, 2007, Level 7; and is related to the material in the *Teaching and Learning Guide for Physics*, Ministry of Education, 2010 at <u>http://seniorsecondary.tki.org.nz</u>. The standard is aligned to the achievement objectives *Physical Inquiry and Physics Concepts* in the Physical World strand and *Communicating in Science* in the Nature of Science strand.

This standard is also derived from Te Marautanga o Aotearoa. For details of Te Marautanga o Aotearoa achievement objectives to which this standard relates, see the <u>Papa Whakaako</u> for the relevant learning area.

2 *Demonstrate understanding* involves writing statements that show an awareness of how simple facets of phenomena, concepts or principles relate to a described situation.

Demonstrate in-depth understanding involves writing statements that give reasons why phenomena, concepts or principles relate to a described situation. For mathematical solutions, the information may not be directly usable or immediately obvious.

Demonstrate comprehensive understanding involves writing statements that demonstrate understanding of connections between concepts.

- 3 Written statements include mathematical solutions and/or descriptions. Descriptions may include graphs or diagrams.
- 4 Assessment is limited to a selection from the following:

Static Electricity:

- uniform electric field
- electric field strength
- force on a charge in an electric field
- electric potential energy
- work done on a charge moving in an electric field.

DC Electricity.

- parallel circuits with resistive component(s) in series with the source
- circuit diagrams
- voltage
- current
- resistance
- energy
- power.

Electromagnetism:

- force on a current carrying conductor in a magnetic field
- force on charged particles moving in a magnetic field
- induced voltage generated across a straight conductor moving in a uniform magnetic field.

Relationships:

. .

$$E = \frac{V}{d} \qquad F = Eq \qquad \Delta E_p = Eqd \qquad E_k = \frac{1}{2} mv^2$$

$$F = BIL \qquad F = Bqv \qquad V = BvL$$

$$I = \frac{q}{t} \qquad V = \frac{\Delta E}{q} \qquad V = IR \qquad P = IV \qquad P = \frac{\Delta E}{t}$$

$$R_T = R_1 + R_2 + \dots \qquad \frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \dots$$

5 Assessment Specifications for this achievement standard can be accessed through the Physics Resources page found at <u>http://www.nzqa.govt.nz/qualifications-standards/qualifications/ncea/ncea-subject-resources/</u>.